By Topic

Recursive particle swarm optimization applications in radial basis function networks modeling system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Baolei Li ; Sch. of Inf. Sci. & Eng., Yunnan Univ., Kunming, China ; Xinlin Shi ; Jianhua Chen ; Zhenzhou An
more authors

A novel strategy on particle swarm optimization is proposed to solve dynamic optimization problems, in which the data are obtained not once for all but one by one. The evolutionary states of the particle swarm are guided recursively by the proposed algorithm, according to the information achieved by the continuous data and the prior estimated knowledge on the solution space. The experimental results for three test functions show that radial basis function networks modeling system based on the proposed recursive algorithm requires fewer radial basis functions and gives more accurate results than other traditional improved PSO in solving dynamic problems.

Published in:

Biomedical Engineering and Informatics (BMEI), 2011 4th International Conference on  (Volume:4 )

Date of Conference:

15-17 Oct. 2011