By Topic

Comparison of feature selection methods for multiclass cancer classification based on microarray data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaobo Li ; Sch. of Inf. Sci. & Technol., Zhejiang Int. Studies Univ., Hangzhou, China ; Sihua Peng ; Xiaosi Zhan ; Jinxiang Zhang
more authors

Multiclass cancer classification remains a challenging task in the field of machine learning. We presented a comparative study of seven feature selection methods and evaluated their performance by six different types of classification methods. We applied it to the four multiclass cancer datasets. We demonstrated that feature selection is critical for multiclass cancer classification performance. We also demonstrated that an appropriate combination of feature selection techniques and classification methods makes it possible to achieve excellent performance on multiclass cancer classification task. Support vector machine method based on recursive feature elimination (SVM-RFE) feature selection algorithm combined with sequential minimal optimization algorithm for training support vector machines (SMO) classification method showed the best performance.

Published in:

Biomedical Engineering and Informatics (BMEI), 2011 4th International Conference on  (Volume:3 )

Date of Conference:

15-17 Oct. 2011