By Topic

Determining the repeat number of cross-validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kun Yang ; Sch. of Comput. Sci. & Technol., Hangzhou Dianzi Univ., Hangzhou, China ; Haipeng Wang ; Guojun Dai ; Sanqing Hu
more authors

The cross-validation is probably the most popular approach for estimating the classification error rate in classifying gene expression data. In order to reduce the variance of estimation, the procedure of cross-validation will be repeated to get the average result. However, the repetition number of cross-validation is generally set by an empirical value. This paper proposed two methods (FCI and TSE) for determining the repeat number of cross-validation based on the approximate confidence interval. The experimental results on real data show the empirical method of giving repeat number of cross-validation is usually unreliable and the proposed methods can determine cross-validation repeat number to achieve a pre-specified precision of the error rate. Furthermore, both methods can automatically adjust to meet the change of data, the value of k-fold and classification model.

Published in:

Biomedical Engineering and Informatics (BMEI), 2011 4th International Conference on  (Volume:3 )

Date of Conference:

15-17 Oct. 2011