By Topic

Segmentation of brain tissue based on connected component labeling and mathematic morphology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In order to realize more accurate and efficient segmentation of the Visible Human dataset, an indirect algorithm based on connected component labeling and mathematic morphology was proposed for brain tissue segmentation in this paper. Initially, the region of nonbrain tissue was roughly distinguished through connected component labeling. Then its edge was refined by means of dilation and erosion to complete the segmentation of nonbrain tissue. Finally, extraction of brain tissue was realized by eliminating the segmented nonbrain tissue from the original image. The experimental results show that the proposed algorithm can lead to satisfactory segmentation of brain tissue.

Published in:

2011 4th International Conference on Biomedical Engineering and Informatics (BMEI)  (Volume:1 )

Date of Conference:

15-17 Oct. 2011