By Topic

Sensing and Probing Cardinalities for Active Cognitive Radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Thang Van Nguyen ; Dept. of Electron. & Radio Eng., Kyung Hee Univ., Yongin, South Korea ; Hyundong Shin ; Quek, T.Q.S. ; Win, M.Z.

In a cognitive radio network, opportunistic spectrum access (OSA) to the underutilized spectrum involves not only sensing the spectrum occupancy but also probing the channel quality in order to identify an idle and good channel for data transmission-particularly if a large number of channels is open for secondary spectrum reuse. Although such a joint mechanism, referred to as active sensing, may improve the OSA performance due to diversity, it inevitably incurs additional energy consumption. In this paper, we consider a wideband cognitive radio network with limited available frame energy and treat a fundamental energy allocation problem: how available energy should be optimally allocated for sensing, probing, and data transmission to maximize the achievable average OSA throughput. By casting this problem into the multiarmed bandit framework under probably approximately correct (PAC) learning, we put forth a proactive strategy for determining the optimal sensing cardinality (the number of channels chosen to sense) and probing cardinality (the number of channels chosen to probe) that maximize the average throughput of the secondary user with limited available frame energy. This framework determines the optimal amount of pure exploration for the active sensing OSA bandit problem in which we refine the action (median) elimination algorithm for channel probing to minimize the sample complexity in PAC learning. Numerical results show that the optimal active sensing achieves a significant throughput gain over the (even optimal) sensing alone. Therefore, this work provides an energy allocation policy to optimally balance the available energy between exploration (sensing and probing) and exploitation (data transmission), giving the optimal diversity-energy tradeoff for the average OSA throughput.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 4 )