Cart (Loading....) | Create Account
Close category search window

An Active Low-Loss Motor Terminal Filter for Overvoltage Suppression and Common-Mode Current Reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuen, K.K.-F. ; Centre for Power Electron., City Univ. of Hong Kong, Kowloon, China ; Chung, H.S.-H. ; Cheung, V.S.

Inverter-fed motor drive systems are widely used in industrial applications because of their energy efficiency and flexible control of machinery using maintenance-free induction motors. As switching inverters generate fast-switching voltage pulses, the transmission-line effects of the motor cable and motor stator windings become significant, and may lead to a doubling of the supply voltage to the motor and cable, overvoltage inside the motor windings, and an increase in the common-mode current. Such phenomena cause premature failure of the motor and cable insulation. A typical protective measure is the use of a passive filter to reduce the voltage surges and alter the rise time of the voltage pulses at the motor terminals. However, most passive filters have the drawbacks of bulky size and high power loss. This paper presents an active terminal filter that can perform the same functions as the passive filters with low power dissipation. An experimental filter has been built and evaluated on a 1-hp three-phase motor drive system with different motor cable lengths. A comparative study into the performance among the commonly used RLC filter and RC filter, and the proposed filter is provided.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.