By Topic

Infinite-Horizon Switched LQR Problems in Discrete Time: A Suboptimal Algorithm With Performance Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Zhang ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Jianghai Hu ; Abate, A.

This paper studies the quadratic regulation problem for discrete-time switched linear systems (DSLQR problem) on an infinite time horizon. A general relaxation framework is developed to simplify the computation of the value iterations. Based on this framework, an efficient algorithm is developed to solve the infinite-horizon DSLQR problem with guaranteed closed-loop stability and suboptimal performance. Due to these guarantees, the proposed algorithm can be used as a general controller synthesis tool for switched linear systems.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 7 )