By Topic

Robust correction of 3D geo-metadata in photo collections by forming a photo grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shahrouz Yousefi ; Digital Media Lab., Applied Physics and Electronics, Umeå University, Umeå, Sweden 90187 ; Farid Abedan Kondori ; Haibo Li

In this work, we present a technique for efficient and robust estimation of the exact location and orientation of a photo capture device in a large data set. The provided data set includes a set of photos and the associated information from GPS and orientation sensor. This attached metadata is noisy and lacks precision. Our strategy to correct this uncertain data is based on the data fusion between measurement model, derived from sensor data, and signal model given by the computer vision algorithms. Based on the retrieved information from multiple views of a scene we make a grid of images. Our robust feature detection and matching between images result in finding a reliable transformation. Consequently, relative location and orientation of the data set construct the signal model. On the other hand, information extracted from the single images combined with the measurement data make the measurement model. Finally, Kalman filter is used to fuse these two models iteratively and enhance the estimation of the ground truth(GT) location and orientation. Practically, this approach can help us to design a photo browsing system from a huge collection of photos, enabling 3D navigation and exploration of our huge data set.

Published in:

Wireless Communications and Signal Processing (WCSP), 2011 International Conference on

Date of Conference:

9-11 Nov. 2011