Cart (Loading....) | Create Account
Close category search window
 

Implantable hybrid chrome silicide temperature sensor for power MEMS devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hyunchul Park ; Dept. of Aerosp. Eng., KAIST, Daejeon, South Korea ; Yongdae Kim ; Eun Sang Jung ; Sejin Kwon

In this Letter, an implantable hybrid temperature sensor for use in a micro-scale space in power MEMS devices is proposed. The developed sensor use chrome silicide (CrSi2), which has a very high electromotive force, and nickel as a base metal. Since a thermocouple is an appropriate device to measure temperature at a specific spot, the correlations between the junction sizes and electromotive forces should be verified to reduce the junction size of the thermocouple. Furthermore, it is necessary to verify the performance of the thermocouple implanted in a microdevice by patterning a resistance temperature detector (RTD) on the side of the cold junctions to evaluate the reference temperature of the nickel. The Seebeck coefficients of the CrSi2 thin film thermocouples occur at approximately 70 V/°C, and the values have been shown to be 1.8 times higher than those of commercial thermocouples. The value of the slope, αNi, which is the temperature coefficient of resistance (TCR) of the nickel RTD is 0.0063/°C at 20°C, whereas the reference value of the TCR of nickel, αNi-ref is 0.0067/°C at 20°C. The third-order polynomial compensation is 99.989° of the regression square value. Based on the verification, a prototype of the hybrid temperature sensor is implanted in a micro methanol°hydrogen peroxide auto-thermal reforming module by stacking six different layers that consist of temperature sensors for the base and different channel figures for the reforming reaction.

Published in:

Micro & Nano Letters, IET  (Volume:6 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.