Cart (Loading....) | Create Account
Close category search window
 

Xampling at the Rate of Innovation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michaeli, T. ; Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Eldar, Y.C.

We address the problem of recovering signals from samples taken at their rate of innovation. Our only assumption is that the sampling system is such that the parameters defining the signal can be stably determined from the samples, a condition that lies at the heart of every sampling theorem. Consequently, our analysis subsumes previously studied nonlinear acquisition devices and nonlinear signal classes. In particular, we do not restrict attention to memoryless nonlinear distortions or to union-of-subspace models. This allows treatment of various finite-rate-of-innovation (FRI) signals that were not previously studied, including, for example, continuous phase modulation transmissions. Our strategy relies on minimizing the error between the measured samples and those corresponding to our signal estimate. This least-squares (LS) objective is generally nonconvex and might possess many local minima. Nevertheless, we prove that under the stability hypothesis, any optimization method designed to trap a stationary point of the LS criterion necessarily converges to the true solution. We demonstrate our approach in the context of recovering pulse streams in settings that were not previously treated. Furthermore, in situations for which other algorithms are applicable, we show that our method is often preferable in terms of noise robustness.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.