Cart (Loading....) | Create Account
Close category search window

Stability and Bifurcation Analysis of Models for Zebrafish Somitogenesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li-Ping Tian ; Sch. of Inf., Beijing Wuzi Univ., Beijing, China ; Fang-Xiang Wu

Notch-Delta signaling is indispensable for somitogenesis, which controls the vertebrate segmentation during embryonic development. Several theoretical models have been proposed to explain this interesting process. In zebrafish somitogenesis, genes her1, her7, delta, and their proteins plays the important roles. However, an auto-repression model with time delay involved only by her1/her7 is able to explain zebrafish somitogenesis. This paper will systematically study the dynamics of this model. Specifically we investigate its stability, bifurcation (oscillation), and stability of oscillation. First, the conditions for both stability and bifurcation are presented based on the linearized model. Then three indices for bifurcation of this nonlinear model are derived by using linear functional operator analysis. Finally, the numerical simulations are carried out to illustrate the theoretical results developed in this study.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:10 ,  Issue: 4 )

Date of Publication:

Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.