By Topic

Classification of Pansharpened Urban Satellite Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Palsson, F. ; Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland ; Sveinsson, J.R. ; Benediktsson, J.A. ; Aanaes, H.

The classification of high resolution urban remote sensing imagery is addressed with the focus on classification of imagery that has been pansharpened by a number of different pansharpening methods. The pansharpening process introduces some spectral and spatial distortions in the resulting fused multispectral image, the amount of which highly varies depending on which pansharpening technique is used. In the majority of the pansharpening techniques that have been proposed, there is a compromise between the spatial enhancement and the spectral consistency. Here we study the effects of the spectral and spatial distortions on the accuracy in classification of pansharpened imagery. We also study the performance in terms of accuracy of the various pansharpening techniques during classification with spatial information, obtained using mathematical morphology (MM). MM is used to derive local spatial information from the panchromatic data. Random Forests (RF) and Support Vector Machines (SVM) will be used as classifiers. Experiments are done for three different datasets that have been obtained by two different imaging sensors, IKONOS and QuickBird. These sensors deliver multispectral images that have four bands, R, G, B and near infrared (NIR). To further study the contribution of the NIR band, experiments are done using both the RGB bands and all four bands, respectively.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:5 ,  Issue: 1 )