By Topic

Fourier-Bessel Series Modeling of Dielectrophoretic Bionanoparticle Transport: Principles and Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
David J. Bakewell ; Department of Electrical Engineering and Electronics, University of Liverpool, U.K. ; Aleksandr Chichenkov

Principles and applications are described for a Fourier-Bessel series model that predicts the transport of bionanoparticles driven by a dielectrophoretic (DEP) force and randomized by Brownian motion. The model is applicable for a dielectrophoretic force that spatially decays from the electrode array according to a reciprocal-law; that is, in the near field of a planar interdigitated array or in the far field where other long range forces assist DEP transport, e.g., ac electro-osmosis. Capabilities of the model are demonstrated for estimating and decomposing data typical of dielectrophoretic bionanoparticle collection experiments. An important approximation, for moderately strong DEP forces, is that a collection can largely be described by a single exponential profile with a square-law dependence on microdevice chamber height. Applications of the model demonstrate transformation and representation of time-dependent bionanoparticle transport in the frequency domain and prediction of a modulation bandwidth that concurs with experimental observations.

Published in:

IEEE Transactions on NanoBioscience  (Volume:11 ,  Issue: 1 )