By Topic

Design, Modeling, and Control of a Novel Automotive Transmission Clutch Actuation System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xingyong Song ; Dept. of Mech. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Chien-Shin Wu ; Zongxuan Sun

Clutch fill control is the key enabler for a smooth clutch-to-clutch shift, which is critical for the performance and fuel economy of both automatic and hybrid transmissions. While a precise and robust clutch fill is crucial, its control is very challenging as the traditional approach is still in the open-loop fashion due to the lack of a feedback sensor. To address this challenge, a new clutch actuation mechanism is proposed, which realizes an internal feedback structure without any sensor measurement. The proposed mechanism is novel as it embeds all the control elements in the orifice area regulation, which successfully solves the precise and robust control of the hydraulic system with nonlinear dynamics. In this paper, we first present the working principle of the new clutch actuation mechanism. Then, the mechanical system design is shown and the system dynamic model is built. To this end, the proposed internal feedback control mechanism is fabricated and validated in a transmission testing fixture. The new mechanism performance is finally presented through a series of simulation and experimental results.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:17 ,  Issue: 3 )