By Topic

Adaptive Robust Control of Servo Mechanisms With Compensation for Nonlinearly Parameterized Dynamic Friction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhiping Li ; Beijing Inst. of Control Eng., Beijing, China ; Jie Chen ; Guozhu Zhang ; Minggang Gan

In this brief, an adaptive robust control (ARC) scheme with compensation for nonlinearly parameterized dynamic friction is proposed. Both parametric uncertainties and external disturbances are considered in this method. Our method takes advantage of a Lipschitzian property with respect to the parameters of nonlinearly parameterized model in the ARC design. The outcome is that the number of parameters to be updated in the ARC is equal to the number of unknown parameters in the plant, and thus the resulting control algorithm is convenient to be implemented. We have proved theoretically that the proposed method can not only guarantee desired transient performance for the system, but also make the magnitude of steady-state tracking error to be arbitrarily small in the presence of parametric uncertainties only. Experimental results are given to demonstrate the effectiveness of the proposed ARC scheme.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:21 ,  Issue: 1 )