Cart (Loading....) | Create Account
Close category search window
 

Interacting Multiple Model Filter-Based Sensor Fusion of GPS With In-Vehicle Sensors for Real-Time Vehicle Positioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kichun Jo ; Dept. of Automotive Eng., Hanyang Univ., Seoul, South Korea ; Keounyup Chu ; Myoungho Sunwoo

Vehicle position estimation for intelligent vehicles requires not only highly accurate position information but reliable and continuous information provision as well. A low-cost Global Positioning System (GPS) receiver has widely been used for conventional automotive applications, but it does not guarantee accuracy, reliability, or continuity of position data when GPS errors occur. To mitigate GPS errors, numerous Bayesian filters based on sensor fusion algorithms have been studied. The estimation performance of Bayesian filters primarily relies on the choice of process model. For this reason, the change in vehicle dynamics with driving conditions should be addressed in the process model of the Bayesian filters. This paper presents a positioning algorithm based on an interacting multiple model (IMM) filter that integrates low-cost GPS and in-vehicle sensors to adapt the vehicle model to various driving conditions. The model set of the IMM filter is composed of a kinematic vehicle model and a dynamic vehicle model. The algorithm developed in this paper is verified via intensive simulation and evaluated through experimentation with a real-time embedded system. Experimental results show that the performance of the positioning system is accurate and reliable under a wide range of driving conditions.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 1 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.