By Topic

Network MIMO With Linear Zero-Forcing Beamforming: Large System Analysis, Impact of Channel Estimation, and Reduced-Complexity Scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hoon Huh ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Tulino, A.M. ; Caire, G.

We consider the downlink of a multicell system with multiantenna base stations and single-antenna user terminals, arbitrary base station cooperation clusters, distance-dependent propagation pathloss, and general “fairness” requirements. Base stations in the same cooperation cluster employ joint transmission with linear zero-forcing beamforming, subject to sum or per-base station power constraints. Intercluster interference is treated as noise at the user terminals. Analytic expressions for the system spectral efficiency are found in the large-system limit where both the numbers of users and antennas per base station tend to infinity with a given ratio. In particular, for the per-base station power constraint, we find new results in random matrix theory, yielding the squared Frobenius norm of submatrices of the Moore-Penrose pseudo-inverse for the structured non-i.i.d. channel matrix resulting from the cooperation cluster, user distribution, and path-loss coefficients. The analysis is extended to the case of nonideal Channel State Information at the Transmitters obtained through explicit downlink channel training and uplink feedback. Specifically, our results illuminate the trade-off between the benefit of a larger number of cooperating antennas and the cost of estimating higher-dimensional channel vectors. Furthermore, our analysis leads to a new simplified downlink scheduling scheme that preselects the users according to probabilities obtained from the large-system results, depending on the desired fairness criterion. The proposed scheme performs close to the optimal (finite-dimensional) opportunistic user selection while requiring significantly less channel state feedback, since only a small fraction of preselected users must feed back their channel state information.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 5 )