By Topic

Micromechanical Resonators Based on Silicon Two-Dimensional Phononic Crystals of Square Lattice

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Nan Wang ; Institute of Microelectronics, A$ast$STAR (Agency for Science, Technology and Research), Singapore ; Julius Ming-Lin Tsai ; Fu-Li Hsiao ; Bo Woon Soon
more authors

Phononic crystal (PnC) resonators of Bloch-mode resonance made by replacing periodically arranged two or three rows of air holes with one row of air holes on a two-dimensional (2-D) silicon slab with air holes of square lattice have been investigated. Piezoelectric aluminum nitride (AlN) film is employed as the interdigital transducers to transmit and detect acoustic waves, thus making the whole microfabrication process CMOS compatible. We also fabricate a PnC structure which has a stopband of 140 MHz <; f <; 195 MHz which agrees well with the simulation results. From our experimental results, we found that the two kinds of microfabricated PnC resonators have different optimization conditions in terms of resonant frequency and Q factor, as well as insertion loss, despite their similar design approach. As compared to PnC resonators of hexagonal lattice, the proposed Bloch-mode PnC resonators of square lattice demonstrated higher resonant frequency, higher Q factor, and a smaller device area. The promising acoustic characteristics may be further optimized for applications such as microfluidics, biomedical devices, and radio-frequency communications in the gigahertz range.

Published in:

Journal of Microelectromechanical Systems  (Volume:21 ,  Issue: 4 )