By Topic

CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Carreira, J. ; Comput. Vision & Machine Learning Group, Univ. of Bonn, Bonn, Germany ; Sminchisescu, C.

We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 7 )