By Topic

Learning Hybrid Image Templates (HIT) by Information Projection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhangzhang Si ; Stat. Dept., Univ. of California Los Angeles, Los Angeles, CA, USA ; Song-Chun Zhu

This paper presents a novel framework for learning a generative image representation-the hybrid image template (HIT) from a small number (i.e., 3 sim 20) of image examples. Each learned template is composed of, typically, 50 sim 500 image patches whose geometric attributes (location, scale, orientation) may adapt in a local neighborhood for deformation, and whose appearances are characterized, respectively, by four types of descriptors: local sketch (edge or bar), texture gradients with orientations, flatness regions, and colors. These heterogeneous patches are automatically ranked and selected from a large pool according to their information gains using an information projection framework. Intuitively, a patch has a higher information gain if 1) its feature statistics are consistent within the training examples and are distinctive from the statistics of negative examples (i.e., generic images or examples from other categories); and 2) its feature statistics have less intraclass variations. The learning process pursues the most informative (for either generative or discriminative purpose) patches one at a time and stops when the information gain is within statistical fluctuation. The template is associated with a well-normalized probability model that integrates the heterogeneous feature statistics. This automated feature selection procedure allows our algorithm to scale up to a wide range of image categories, from those with regular shapes to those with stochastic texture. The learned representation captures the intrinsic characteristics of the object or scene categories. We evaluate the hybrid image templates on several public benchmarks, and demonstrate classification performances on par with state-of-the-art methods like HoG+SVM, and when small training sample sizes are used, the proposed system shows a clear advantage.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 7 )