By Topic

Two Efficient Solutions for Visual Odometry Using Directional Correspondence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Naroditsky, O. ; Dept. of Comput. & Inf. Sci., Univ. of Pennsylvania, Philadelphia, PA, USA ; Zhou, X.S. ; Gallier, J. ; Roumeliotis, S.I.
more authors

This paper presents two new, efficient solutions to the two-view, relative pose problem from three image point correspondences and one common reference direction. This three-plus-one problem can be used either as a substitute for the classic five-point algorithm, using a vanishing point for the reference direction, or to make use of an inertial measurement unit commonly available on robots and mobile devices where the gravity vector becomes the reference direction. We provide a simple, closed-form solution and a solution based on algebraic geometry which offers numerical advantages. In addition, we introduce a new method for computing visual odometry with RANSAC and four point correspondences per hypothesis. In a set of real experiments, we demonstrate the power of our approach by comparing it to the five-point method in a hypothesize-and-test visual odometry setting.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 4 )