By Topic

Minimally Supervised Novel Relation Extraction Using a Latent Relational Mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bollegala, D. ; Dept. of Electron. & Inf., Univ. of Tokyo, Tokyo, Japan ; Matsuo, Y. ; Ishizuka, M.

The World Wide Web includes semantic relations of numerous types that exist among different entities. Extracting the relations that exist between two entities is an important step in various Web-related tasks such as information retrieval (IR), information extraction, and social network extraction. A supervised relation extraction system that is trained to extract a particular relation type (source relation) might not accurately extract a new type of a relation (target relation) for which it has not been trained. However, it is costly to create training data manually for every new relation type that one might want to extract. We propose a method to adapt an existing relation extraction system to extract new relation types with minimum supervision. Our proposed method comprises two stages: learning a lower dimensional projection between different relations, and learning a relational classifier for the target relation type with instance sampling. First, to represent a semantic relation that exists between two entities, we extract lexical and syntactic patterns from contexts in which those two entities co-occur. Then, we construct a bipartite graph between relation-specific (RS) and relation-independent (RI) patterns. Spectral clustering is performed on the bipartite graph to compute a lower dimensional projection. Second, we train a classifier for the target relation type using a small number of labeled instances. To account for the lack of target relation training instances, we present a one-sided under sampling method. We evaluate the proposed method using a data set that contains 2,000 instances for 20 different relation types. Our experimental results show that the proposed method achieves a statistically significant macroaverage F-score of 62.77. Moreover, the proposed method outperforms numerous baselines and a previously proposed weakly supervised relation extraction method.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 2 )