By Topic

Supporting Pattern-Preserving Anonymization for Time-Series Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lidan Shou ; Coll. of Comput. Sci., Zhejiang Univ., Hangzhou, China ; Xuan Shang ; Ke Chen ; Gang Chen
more authors

Time series is an important form of data available in numerous applications and often contains vast amount of personal privacy. The need to protect privacy in time-series data while effectively supporting complex queries on them poses nontrivial challenges to the database community. We study the anonymization of time series while trying to support complex queries, such as range and pattern matching queries, on the published data. The conventional k-anonymity model cannot effectively address this problem as it may suffer severe pattern loss. We propose a novel anonymization model called (k, P)-anonymity for pattern-rich time series. This model publishes both the attribute values and the patterns of time series in separate data forms. We demonstrate that our model can prevent linkage attacks on the published data while effectively support a wide variety of queries on the anonymized data. We propose two algorithms to enforce (k, P)-anonymity on time-series data. Our anonymity model supports customized data publishing, which allows a certain part of the values but a different part of the pattern of the anonymized time series to be published simultaneously. We present estimation techniques to support query processing on such customized data. The proposed methods are evaluated in a comprehensive experimental study. Our results verify the effectiveness and efficiency of our approach.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 4 )