Cart (Loading....) | Create Account
Close category search window

Distributed Evidence Propagation in Junction Trees on Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yinglong Xia ; IBM T.J. Watson Res. Center, Yorktown Heights, NY, USA ; Prasanna, V.K.

Evidence propagation is a major step in exact inference, a key problem in exploring probabilistic graphical models. In this paper, we propose a novel approach for parallelizing evidence propagation in junction trees on clusters. Our proposed method explores structural parallelism in a given junction tree. We decompose a junction tree into a set of subtrees, each consisting of one or multiple leaf-root paths in the junction tree. In evidence propagation, we first perform evidence collection in these subtrees concurrently. Then, the partially updated subtrees exchange data for junction tree merging, so that all the cliques in the junction tree can be fully updated for evidence collection. Finally, evidence distribution is performed in all the subtrees to complete evidence propagation. Since merging subtrees requires communication across processors, we propose a technique called bitmap partitioning to explore the tradeoff between bandwidth utilization efficiency and the overhead due to the startup latency of message passing. We implemented the proposed method using Message Passing Interface (MPI) on a state-of-the-art Myrinet cluster consisting of 128 processors. Compared with a baseline method, our technique results in improved scalability.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:23 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.