By Topic

Tracking Monotonically Advancing Boundaries in Image Sequences Using Graph Cuts and Recursive Kernel Shape Priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chang, J.C. ; Dept. of Biomath., Univ. of California-Los Angeles, Los Angeles, CA, USA ; Brennan, K.C. ; Chou, T.

We introduce a probabilistic computer vision technique to track monotonically advancing boundaries of objects within image sequences. Our method incorporates a novel technique for including statistical prior shape information into graph-cut based segmentation, with the aid of a majorization-minimization algorithm. Extension of segmentation from single images to image sequences then follows naturally using sequential Bayesian estimation. Our methodology is applied to two unrelated sets of real biomedical imaging data, and a set of synthetic images. Our results are shown to be superior to manual segmentation.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 5 )