By Topic

Shaping energetically efficient brachiation motion for a 24-DOF gorilla robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Pchelkin, S.S. ; Dept. of Eng. Cybern., Norwegian Univ. of Sci. & Technol., Trondheim, Norway ; Shiriaev, A.S. ; Mettin, U. ; Freidovich, L.B.
more authors

We consider a 24-degrees-of-freedom monkey robot that is supposed to perform brachiation locomotion, i.e. swinging from one row of a horizontal ladder to the next one using the arms. The robot hand is constructed as a planar hook so that the contact point about which the robot swings is a passive hinge. We identify the 10 most relevant degrees of freedom for this underactuated mechanical system and formulate a tractable search: (a) introduce a family of coordination patterns to be enforced on the dynamics with respect to a path coordinate; (b) formulate geometric equality constraints that are necessary for periodic locomotion; (c) generate trajectories from integrable reduced dynamics associated with the passive hinge; (d) evaluate the energetic cost of transport. Moreover, we observe that a linear approximation of the reduced dynamics can be used for trajectory generation which allows us to incorporate the gradient of the cost function into the search algorithm.

Published in:

Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on

Date of Conference:

25-30 Sept. 2011