By Topic

Generation of adaptive splitbelt treadmill walking by a biped robot using nonlinear oscillators with phase resetting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In this paper, we investigate the locomotor behaviors of a biped robot on a splitbelt treadmill using a locomotion-control system composed of nonlinear oscillators with phase resetting. Our results show that the robot establishes stable walking on the treadmill at various speeds of the belts due to modulation of the rhythm and phase by phase resetting. In addition, the phase differences between the leg movements shifted from out of phase, and duty factors were autonomously modulated depending on the speed discrepancy between the belts occurring through dynamic interactions among the robot's mechanical system, the oscillator control system, and the environment. Such shifts of phase differences between the leg movements and modulations of duty factors are observed during human splitbelt treadmill walking, and our results suggest that our dynamic model using the robot and oscillator control system reflects a certain essence of the ability to produce adaptive locomotor behaviors.

Published in:

Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on

Date of Conference:

25-30 Sept. 2011