By Topic

On-line estimation of a stability metric including grip conditions and slope: Application to rollover prevention for All-Terrain Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mathieu Richier ; Cemagref, 24 avenue des Landais, 63172 Aubière, France ; Roland Lenain ; Benoit Thuilot ; Christophe Debain

Rollover is the principal cause of serious accidents for All-Terrain Vehicles (ATV), especially for light vehicles (e.g. quad bikes). In order to reduce this risk, the development of active devices, contributes a promising solution. With this aim, this paper proposes an algorithm allowing to predict the rollover risk, by means of an on-line estimation of a stability criterion. Among several rollover indicators, the Lateral Load Transfer (LLT) has been chosen because its estimation needs only low cost sensing equipment compared to the price of a light ATV. An adapted backstepping observer associated to a bicycle model is first developed, allowing the estimation of the grip conditions. In addition, the lateral slope is estimated thanks to a classical Kalman filter relying on measured acceleration and roll rate. Then, an expression of the LLT is derived from a roll model taking into account the grip conditions and the slope. Finally, the LLT value is anticipated by means of a prediction algorithm. The capabilities of this system are investigated thanks to full scale experiments with a quad bike.

Published in:

2011 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

25-30 Sept. 2011