Cart (Loading....) | Create Account
Close category search window
 

The sigma.7 haptic interface for MiroSurge: A new bi-manual surgical console

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Tobergte, A. ; DLR - German Aerosp. Center, Inst. of Robot. & Mechatron., Wessling, Germany ; Helmer, P. ; Hagn, U. ; Rouiller, P.
more authors

This paper presents the design and control of the sigma.7 haptic device and the new surgical console of the MiroSurge robotic system. The console and the haptic devices are designed with respect to requirements in minimally invasive robotic surgery. Dedicated left and right handed devices are integrated in an operator console in an ergonomic configuration. The height of the whole console is adjustable, allowing the surgeon seated and standed operation. Each of the devices is fully actuated in seven degrees of freedom (DoF). A parallel mechanism with 3 DoF actuates the translational motion and an attached wrist with 3 intersecting axis drives the rotations of the grasping unit. This advantageous design leads to inherently decoupled kinematics and dynamics. Cartesian forces are 20 N within the translational workspace, which is a sphere of about 120 mm diameter for each device. The rotational wrist of the device covers the whole workspace of the human hand and provides maximum torques of about 0.4 Nm. The grasping unit can display forces up to 8 N. An integrated force/torque sensor is used to increase the transparency of the devices by reducing inertia and friction. It is theoretically shown that the non-linear closed loop system behaves like a passive system and experimental results validate the approach. The sigma.7 haptic devices are designed by Force Dimension in cooperation with the German Aerospace Center (DLR). DLR designed the surgical console and integrated the haptic devices in the MiroSurge system.

Published in:

Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on

Date of Conference:

25-30 Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.