By Topic

Accurate human motion capture in large areas by combining IMU- and laser-based people tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ziegler, J. ; Dept. of Comput. Sci., Univ. of Freiburg, Freiburg, Germany ; Kretzschmar, H. ; Stachniss, C. ; Grisetti, G.
more authors

A large number of applications use motion capture systems to track the location and the body posture of people. For instance, the movie industry captures actors to animate virtual characters that perform stunts. Today's tracking systems either operate with statically mounted cameras and thus can be used in confined areas only or rely on inertial sensors that allow for free and large-scale motion but suffer from drift in the pose estimate. This paper presents a novel tracking approach that aims to provide globally aligned full body posture estimates by combining a mobile robot and an inertial motion capture system. In our approach, a mobile robot equipped with a laser scanner is used to anchor the pose estimates of a person given a map of the environment. It uses a particle filter to globally localize a person wearing a motion capture suit and to robustly track the person's position. To obtain a smooth and globally aligned trajectory of the person, we solve a least squares optimization problem formulated from the motion capture suite and tracking data. Our approach has been implemented on a real robot and exhaustively tested. As the experimental evaluation shows, our system is able to provide locally precise and globally aligned estimates of the person's full body posture.

Published in:

Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on

Date of Conference:

25-30 Sept. 2011