By Topic

Rate-Constrained Wireless Networks With Fading Channels: Interference-Limited and Noise-Limited Regimes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Masoud Ebrahimi ; Research In Motion Limited, Ottawa, Canada ; Amir K. Khandani

A network of n wireless communication links is considered in a Rayleigh fading environment. It is assumed that each link can be active and transmit with a constant power P or remain silent. The objective is to maximize the number of active links such that each active link can transmit with a constant rate λ. In a Rayleigh fading environment, an upper bound is derived that shows the number of active links scales at most like 1/λ log n. To obtain a lower bound, a decentralized link activation strategy is described and analyzed. It is shown that for small values of λ, the number of supported links by this strategy meets the upper bound; however, as λ grows, this number becomes far below the upper bound. To shrink the gap between the upper bound and the achievability result, a modified link activation strategy is proposed and analyzed based on some results from random graph theory. It is shown that this modified strategy performs very close to the optimum. Specifically, this strategy is asymptotically almost surely optimum when λ approaches ∞ or 0. It turns out that the optimality results are obtained in an interference-limited regime. It is demonstrated that, by proper selection of the algorithm parameters, the proposed scheme also allows the network to operate in a noise-limited regime in which the transmission rates can be adjusted by the transmission powers. The price for this flexibility is a decrease in the throughput scaling law by a multiplicative factor of loglogn. Finally, both decentralized and centralized schemes are evaluated in a distance-dependent fading environment with a path loss exponent of m and are shown to achieve throughput that scale like Θ( n(m/m+2) log n ) and Θ(n[(m(2)+2m)/( m(2)+2m+4)]), respectively.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 12 )