By Topic

The Geometry of Generalized Binary Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nowak, R.D. ; Dept. of Electr. & Comput. Eng., Univ. of Wisconsin-Madison, Madison, WI, USA

This paper investigates the problem of determining a binary-valued function through a sequence of strategically selected queries. The focus is an algorithm called Generalized Binary Search (GBS). GBS is a well-known greedy algorithm for determining a binary-valued function through a sequence of strategically selected queries. At each step, a query is selected that most evenly splits the hypotheses under consideration into two disjoint subsets, a natural generalization of the idea underlying classic binary search. This paper develops novel incoherence and geometric conditions under which GBS achieves the information-theoretically optimal query complexity; i.e., given a collection of N hypotheses, GBS terminates with the correct function after no more than a constant times logN queries. Furthermore, a noise-tolerant version of GBS is developed that also achieves the optimal query complexity. These results are applied to learning halfspaces, a problem arising routinely in image processing and machine learning.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 12 )