Cart (Loading....) | Create Account
Close category search window
 

Multi-Cell MIMO Downlink With Cell Cooperation and Fair Scheduling: A Large-System Limit Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hoon Huh ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Sung-Hyun Moon ; Young-Tae Kim ; Inkyu Lee
more authors

We consider the downlink of a cellular network with multiple cells and multi-antenna base stations. Our model includes distance-dependent pathloss, arbitrary clusters of cooperating cells, and general “fairness” requirements. Beyond Monte Carlo simulation, no efficient computation method to evaluate the ergodic throughput of such systems has been presented, yet. Furthermore, for systems of practical size with tens of cells and hundreds of users per cell, even simulation becomes challenging. We develop an analytic framework based on the combination of results from large random matrix theory and convex optimization. This allows computationally efficient calculation of the system performance in the so-called “large system limit”, i.e., in the limit of a large number of antennas per base station and a large number of users per cell, while the ratio of antennas per user is kept constant. In particular, the system ergodic throughput, subject to per-base station power constraints and to general fairness criteria, is obtained via the iterative solution of a system of fixed-point equations. Comparisons with finite-dimensional simulation results show that the large-system analysis provides remarkably accurate approximations for the actual finite-dimensional systems, even for a small number of users and base station antennas.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 12 )

Date of Publication:

Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.