Cart (Loading....) | Create Account
Close category search window

A Microfluidic Approach to Pulsatile Delivery of Drugs for Neurobiological Studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wang, Bin ; Dept. of Mech. Eng., Columbia Univ., New York, NY, USA ; Junhui Ni ; Litvin, Y. ; Pfaff, D.W.
more authors

We present an innovative microfluidic approach to transcranial delivery of small quantities of drugs in brief time pulses for neurobiological studies. The approach is based on a two-stage process of consecutive drug dispensing and delivery, demonstrated by a device featuring a fully planar design in which the microfluidic components are integrated in a single layer. This 2-D configuration offers ease in device fabrication and is compatible to diverse actuation schemes. A compliance-based and normally closed check valve is used to couple the microchannels that are responsible for drug dispensing and delivery. Brief pneumatic pressure pulses are used to mobilize buffer and drug solutions, which are injected via a cannula into brain tissue. Thus, the device can potentially allow transcranial drug delivery and can also be potentially extended to enable transdermal drug delivery. We have characterized the device by measuring the dispensed and delivered volumes under varying pneumatic driving pressures and pulse durations, the standby diffusive leakage, and the repeatability in the delivery of multiple pulses of drug solutions. Results demonstrate that the device is capable of accurately dispensing and delivering drug solutions 5 to 70 nL in volume within time pulses as brief as 50 ms, with negligible diffusive drug leakage over a practically relevant time scale. Furthermore, testing of pulsatile drug delivery into intact mouse brain tissue has been performed to demonstrate the potential application of the device to neurobiology.

Published in:

Microelectromechanical Systems, Journal of  (Volume:21 ,  Issue: 1 )

Date of Publication:

Feb. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.