By Topic

Advances in Manufacturing of Molded Tips for Scanning Probe Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Nicolaie Moldovan ; Advanced Diamond Technologies Inc., Romeoville, IL, USA ; Zhenting Dai ; Hongjun Zeng ; John A. Carlisle
more authors

A common method for producing sharp tips used in scanning probe microscopy (SPM) and other applications involving nanoscale tips is to deposit thin-film materials, such as metals, silicon nitride, or diamond-based films, into four-faceted pyramidal molds that are formed by anisotropic etching into a (100) silicon substrate. This well-established method is capable of producing tips with radii as small as a few nanometers. However, the shape of the tip apex is difficult to control with this method, and wedge-shaped tips that are elongated in one dimension are often obtained. This limitation arises due to the practical difficulty of having four planes intersecting at a single point. Here, a new method for producing three-sided molds for SPM tips is demonstrated through the use of etching in (311) silicon wafers. It is shown that silicon nitride and ultrananocrystalline diamond tips fabricated with this new method are wedge free and sharp (<; 10 nm radius), thereby restoring tip molding as a well-controlled manufacturing process for producing ultrasharp SPM tips.

Published in:

Journal of Microelectromechanical Systems  (Volume:21 ,  Issue: 2 )