By Topic

Model-Based Subspace Projection Beamforming for Deep Interference Nulling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jonathan Landon ; L3 Communications Systems¿West, Salt Lake City ; Brian D. Jeffs ; Karl F. Warnick

This paper considers the problem of adaptive array processing for interference canceling to drive very deep nulls in difficult signal environments. In many practical scenarios, the achievable null depth is limited by covariance matrix estimation error leading to poor identification of the interference subspace. We address the particularly troublesome cases of low interference-to-noise ratio (INR), relatively rapid interference motion, and correlated noise across the receiving array. A polynomial-based model is incorporated in the proposed algorithm to track changes in the array covariance matrix over time, mitigate interference subspace estimation errors, and improve canceler performance. The application of phased array feeds for radio astronomical telescopes is used to illustrate the problem and proposed solution. Here even weak residual interference after cancellation may obscure a signal of interest, so very deep beampattern nulls are required. Performance for conventional subspace projection (SP) is compared with polynomial-augmented SP using simulated and real experimental data, showing null-depth improvement of 6 to 30 dB.

Published in:

IEEE Transactions on Signal Processing  (Volume:60 ,  Issue: 3 )