By Topic

Processing of Eye/Head-Tracking Data in Large-Scale Naturalistic Driving Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ahlstrom, C. ; Swedish Nat. Road & Transp. Res. Inst., Linkoping, Sweden ; Victor, T. ; Wege, C. ; Steinmetz, E.

Driver distraction and driver inattention are frequently recognized as leading causes of crashes and incidents. Despite this fact, there are few methods available for the automatic detection of driver distraction. Eye tracking has come forward as the most promising detection technology, but the technique suffers from quality issues when used in the field over an extended period of time. Eye-tracking data acquired in the field clearly differs from what is acquired in a laboratory setting or a driving simulator, and algorithms that have been developed in these settings are often unable to operate on noisy field data. The aim of this paper is to develop algorithms for quality handling and signal enhancement of naturalistic eye- and head-tracking data within the setting of visual driver distraction. In particular, practical issues are highlighted. Developed algorithms are evaluated on large-scale field operational test data acquired in the Sweden-Michigan Field Operational Test (SeMiFOT) project, including data from 44 unique drivers and more than 10 000 trips from 13 eye-tracker-equipped vehicles. Results indicate that, by applying advanced data-processing methods, sensitivity and specificity of eyes-off-road glance detection can be increased by about 10%. In conclusion, postenhancement and quality handling is critical when analyzing large databases with naturalistic eye-tracking data. The presented algorithms provide the first holistic approach to accomplish this task.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 2 )