By Topic

Simplified Multitarget Tracking Using the PHD Filter for Microscopic Video Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wood, T.M. ; Oxford Centre for Ind. & Appl. Math., Univ. of Oxford, Oxford, UK ; Yates, C.A. ; Wilkinson, D.A. ; Rosser, G.

The probability hypothesis density (PHD) filter from the theory of random finite sets is a well-known method for multitarget tracking. We present the Gaussian mixture (GM) and improved sequential Monte Carlo implementations of the PHD filter for visual tracking. These implementations are shown to provide advantages over previous PHD filter implementations on visual data by removing complications such as clustering and data association and also having beneficial computational characteristics. The GM-PHD filter is deployed on microscopic visual data to extract trajectories of free-swimming bacteria in order to analyze their motion. Using this method, a significantly larger number of tracks are obtained than was previously possible. This permits calculation of reliable distributions for parameters of bacterial motion. The PHD filter output was tested by checking agreement with a careful manual analysis. A comparison between the PHD filter and alternative tracking methods was carried out using simulated data, demonstrating superior performance by the PHD filter in a range of realistic scenarios.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:22 ,  Issue: 5 )