Cart (Loading....) | Create Account
Close category search window
 

On the Throughput and Spectrum Sensing Enhancement of Opportunistic Spectrum Access Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stotas, S. ; Centre for Telecommun. Res., King''s Coll. London, London, UK ; Nallanathan, A.

Cognitive radio has attracted an increasing amount of interest over the past few years as an effective method of alleviating the spectrum scarcity problem in wireless communications. One of the most promising approaches in cognitive radio is the opportunistic spectrum access, which enables unlicensed users to access licensed frequency bands that are detected to be idle. In this paper, we propose a novel cognitive radio system that exhibits improved throughput and spectrum sensing capabilities compared to the conventional opportunistic spectrum access cognitive radio systems studied so far. More specifically, we study the average achievable throughput of the proposed cognitive radio system under a single high target detection probability constraint, as well as its ergodic throughput under average transmit and interference power constraints, and propose an algorithm that acquires the optimal power allocation strategy and target detection probability, which under the imposed average interference power constraint becomes an additional optimization variable in the ergodic throughput maximization problem. Finally, we provide simulation results, in order to compare the achievable throughput of the proposed cognitive radio system with the respective throughput of the conventional cognitive radio systems and discuss the effects of the optimal power allocation and target detection probability on the ergodic throughput of the proposed cognitive radio system.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 1 )

Date of Publication:

January 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.