Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Experimental Measurements of the Response of a Single-Transmitter–Receiver Electromagnetic Induction Sensor to a Linear Conductor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Irvine, S.E. ; Defence R&D Canada-Suffield, Medicine Hat, AB, Canada

The experimental results of the response of a single-transmitter-single-receiver electromagnetic induction sensor to a linear conductor are reported. First, the sensor geometry is given, and a simple model is derived to predict the survey profile of the instrument as it moves over a linear conductor. Next, the experimental apparatus is described, and the acquired results are compared with those predicted by the model. As part of this analysis, various orientations of the transmitter and receiver dipoles are considered, as well as different tilt angles of the sensor head. The variation of peak signal strength with height above the linear conductor is also investigated. In all cases, excellent agreement between experiment and theory is achieved. These results demonstrate the potential for implementing simple sensors for detecting linear conductors or buried utilities and are important for verification of theoretical analyses.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:9 ,  Issue: 3 )