By Topic

Intervention in Power Control Games With Selfish Users

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuanzhang Xiao ; Electr. Eng. Dept., Univ. of California, Los Angeles, CA, USA ; Jaeok Park ; van der Schaar, M.

We study the power control problem in single-hop wireless ad hoc networks with selfish users. Without incentive schemes, selfish users tend to transmit at their maximum power levels, causing excessive interference to each other. In this paper, we study a class of incentive schemes based on intervention to induce selfish users to transmit at desired power levels. In a power control scenario, an intervention scheme can be implemented by introducing an intervention device that can monitor the power levels of users and then transmit power to cause interference to users if necessary. Focusing on first-order intervention rules based on individual transmit powers, we derive conditions on the intervention rates and the power budget to achieve a desired outcome as a (unique) Nash equilibrium with intervention and propose a dynamic adjustment process to guide users and the intervention device to the desired outcome. We also analyze the effect of using aggregate receive power instead of individual transmit powers. Our results show that intervention schemes can be designed to achieve any positive power profile while using interference from the intervention device only as a threat. Lastly, simulation results are presented to illustrate the performance improvement from using intervention schemes and the theoretical results.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:6 ,  Issue: 2 )