By Topic

Classification of Privacy-preserving Distributed Data Mining protocols

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhuojia Xu ; School of Computer Science and Mathematics, Victoria University, Melbourne, Australia ; Xun Yi

Recently, a new research area, named Privacy-preserving Distributed Data Mining (PPDDM) has emerged. It aims at solving the following problem: a number of participants want to jointly conduct a data mining task based on the private data sets held by each of the participants. This problem setting has captured attention and interests of researchers, practitioners and developers from the communities of both data mining and information security. They have made great progress in designing and developing solutions to address this scenario. However, researchers and practitioners are now faced with a challenge on how to devise a standard on synthesizing and evaluating various PPDDM protocols, because they have been confused by the excessive number of techniques developed so far. In this paper, we put forward a framework to synthesize and characterize existing PPDDM protocols so as to provide a standard and systematic approach of understanding PPDDM-related problems, analyzing PPDDM requirements and designing effective and efficient PPDDM protocols.

Published in:

Digital Information Management (ICDIM), 2011 Sixth International Conference on

Date of Conference:

26-28 Sept. 2011