By Topic

Optimal placements of flexible objects. II. A simulated annealing approach for the bounded case

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. Albrecht ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Shatin, Hong Kong ; S. K. Cheung ; K. C. Hui ; K. S. Leung
more authors

For pt.I see ibid., p.890-904. The paper is a continuation of the first part, where the authors considered regular arrangements of flexible objects for the unbounded case. The present part deals with a simulated annealing algorithm maximizing the number of flexible objects in equilibrium placements within rigid boundaries. The forces caused by the boundary are taken into account, i.e., the bounded case of placements is considered. The simulated annealing procedure makes use of the special structure of the underlying configuration space and relationships between deformations of flexible objects and resulting forces. This allows one to obtain tight bounds for the annealing parameters which result in n3/2·In5/2 and n·In2n time bounds, respectively, for the computation of equilibrium states by two different cooling schedules. The deformation/force formula is derived from a physical model of flexible discs and is based on numerical experiments which were performed for different materials and different sizes of objects. The algorithm was first implemented and tested for the unbounded case. The run-time is relatively short, even for large numbers of placed discs. These results are compared to the analytical ones obtained for regular placements in the first part of the paper, and agreement between these two sets of results are observed. Furthermore, several experiments for placements with boundary conditions were carried out and the resulting placements clearly show the effect of the forces from the rigid boundary

Published in:

IEEE Transactions on Computers  (Volume:46 ,  Issue: 8 )