By Topic

High performance rotation architectures based on the radix-4 CORDIC algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Antelo, E. ; Fac. de Fisica, Santiago de Compostela Univ., Spain ; Villalba, J. ; Bruguera, J.D. ; Zapata, E.L.

Traditionally, CORDIC algorithms have employed radix-2 in the first n/2 microrotations (n is the precision in bits) in order to preserve a constant scale factor. The authors present a full radix-4 CORDIC algorithm in rotation mode and circular coordinates and its corresponding selection function, and propose an efficient technique for the compensation of the nonconstant scale factor. Three radix-4 CORDIC architectures are implemented: 1) a word serial architecture based on the zero skipping technique, 2) a pipelined architecture, and 3) an application specific architecture (the angles are known beforehand). The first two are general purpose implementations where redundant (carry-save) or nonredundant arithmetic can be used, whereas the last one is a simplification of the first two. The proposed architectures present a good trade-off between latency and hardware complexity when compared with existing CORDIC architectures

Published in:

Computers, IEEE Transactions on  (Volume:46 ,  Issue: 8 )