By Topic

Division algorithms and implementations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oberman, S.F. ; Comput. Syst. Lab., Stanford Univ., CA, USA ; Flynn, M.

Many algorithms have been developed for implementing division in hardware. These algorithms differ in many aspects, including quotient convergence rate, fundamental hardware primitives, and mathematical formulations. The paper presents a taxonomy of division algorithms which classifies the algorithms based upon their hardware implementations and impact on system design. Division algorithms can be divided into five classes: digit recurrence, functional iteration, very high radix, table look-up, and variable latency. Many practical division algorithms are hybrids of several of these classes. These algorithms are explained and compared. It is found that, for low-cost implementations where chip area must be minimized, digit recurrence algorithms are suitable. An implementation of division by functional iteration can provide the lowest latency for typical multiplier latencies. Variable latency algorithms show promise for simultaneously minimizing average latency while also minimizing area

Published in:

Computers, IEEE Transactions on  (Volume:46 ,  Issue: 8 )