By Topic

Decentralized Navigation and Conflict Avoidance for Aircraft in 3-D Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roussos, G. ; Control Systems Lab, Department of Mechanical Engineering, National Technical University of Athens, Zografou, Greece ; Kyriakopoulos, K.J.

We present an algorithm for the distributed navigation and conflict avoidance of nonholonomic aircraft-like agents in 3-D space. The proposed feedback control scheme offers improved applicability to aircraft navigation and compatibility with Air Traffic Management practice with respect to previous work. Our approach aims to maintain a desired horizontal velocity for each aircraft, while limiting the climb or descent angle within bounds according to aircraft performance characteristics. Moreover, the algorithm is designed to favor straight and level flight, resulting in more sensible manoeuvres that require reduced steering effort. The proposed control scheme is based on the Navigation Functions methodology and offers formally guaranteed conflict avoidance and convergence properties. The performance characteristics of our method are demonstrated through simulation results.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 6 )