Cart (Loading....) | Create Account
Close category search window
 

Work Function Engineering With Linearly Graded Binary Metal Alloy Gate Electrode for Short-Channel SOI MOSFET

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Deb, S. ; Dept. of Electron. & Telecommun. Eng., Jadavpur Univ., Kolkata, India ; Singh, N Basanta ; Islam, N. ; Sarkar, S.K.

Over the last few decades, silicon-on-insulator (SOI) technology has been identified as one possible solution for enhancing the performance of CMOS because of its numerous advantages over conventional bulk CMOS technology. One of the primary drawbacks of short-channel SOI MOSFET is the degradation of device threshold voltage with decreasing channel length. Drain-induced barrier-lowering (DIBL) effect, generated from high drain bias, is the main cause behind this length-dependent nature of threshold voltage. This “instability” in threshold voltage is responsible for making SOI device design very challenging. The instability that is known as the threshold voltage rolloff restricts further scaling of SOI devices. In this paper, an idea of work function engineering with continuous horizontal mole fraction variation in a binary alloy gate has been proposed and implemented theoretically. Analytical model-based simulation verified that performance of proposed SOI MOSFET is improved as it has higher immunity to DIBL effect.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 3 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.