By Topic

Design of 11 T Twin-Aperture {\rm Nb}_{3}{\rm Sn} Dipole Demonstrator Magnet for LHC Upgrades

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Karppinen, M. ; TE-Dept., CERN, Geneva, Switzerland ; Andreev, N. ; Apollinari, G. ; Auchmann, B.
more authors

The LHC collimation upgrade foresees two additional collimators installed in the dispersion suppressor regions of points 2, 3 and 7. To obtain the necessary longitudinal space for the collimators, a solution based on an 11 T dipole as replacement of the 8.33 T LHC main dipoles is being considered. CERN and FNAL have started a joint development program to demonstrate the feasibility of technology for this purpose. The program started with the development and test of a 2-m-long single-aperture demonstrator magnet. The goal of the second phase is the design and construction of a series of 2-m-long twin-aperture demonstrator magnets with a nominal field of 11 T at 11.85 kA current. This paper describes the electromagnetic design and gives a forecast of the field quality including saturation of the iron yoke and persistent-current effects in the coils. The mechanical design concepts based on separate collared coils, assembled in a vertically split iron yoke are also discussed.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 3 )