By Topic

Mechanical and Electronic Amplitude-Limiting Techniques in a MEMS Resonant Accelerometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tocchio, A. ; Electron. & Inf. Dept., Politec. di Milano, Milan, Italy ; Caspani, A. ; Langfelder, G.

Two methods for limiting the oscillation amplitude in micromechanical resonators, typically used in many kinds of MEMS sensors, are discussed and compared. First, it is shown how the presence of parasitic capacitances sets several constraints on the design of the oscillating circuit gain and bandwidth. The paper specifically focuses on the case of a transimpedance based oscillator coupled to a clamped-clamped beam, that forms the sensing element of a resonant accelerometer. Experimental results then show that the oscillating amplitude can be limited either using an electronic limiting stage, or exploiting the mechanical nonlinearities of the beam for large displacements. Though the latter approach is advantageous in terms of power dissipation, it is shown that the sensitivity of the resonant accelerometer is strongly compromised.

Published in:

Sensors Journal, IEEE  (Volume:12 ,  Issue: 6 )