By Topic

Performance analysis of LMS adaptive prediction filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. R. Zeidler ; Dept. of Electr. & Comput. Eng., California Univ., San Diego, CA, USA

The conditions required to implement real-time adaptive prediction filters that provide nearly optimal performance in realistic input conditions are delineated. The effects of signal bandwidth, input signal-to-noise ratio (SNR), noise correlation, and noise nonstationarity are explicitly considered. Analytical modeling, Monte Carlo simulations and experimental results obtained using a hardware implementation are utilized to provide performance bounds for specified input conditions. It is shown that there is a nonlinear degradation in the signal processing gain as a function of the input SNR that results from the statistical properties of the adaptive filter weights. The stochastic properties of the filter weights ensure that the performance of the adaptive filter is bounded by that of the optimal matched filter for known stationary input conditions

Published in:

Proceedings of the IEEE  (Volume:78 ,  Issue: 12 )